

l models

1500

SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision

Danna Xue^{1, 2}, Fei Yang², Pei Wang¹, Luis Herranz², Jinqiu Sun¹, Yu Zhu¹, Yanning Zhang¹ ¹Northwestern Polytechnical University, ²Computer Vision Center, Universitat Autònoma de Barcelona {danna_xue, wangpei23}@mail.nwpu.edu.cn, {fyang, lherranz}@cvc.uab.es, {sunjinqiu, yuzhu, ynzhang}@nwpu.edu.cn

Motivation	Experiments							
 Limitation of Current models: Operating at a single accuracy-latency tradeoff Relying on well-crafted network architectures Conducting slimming only on backbones 	 Slimmable models vs independent models Our slimmable method outperforms the individually trained model especially on large models (ResNet50). Globally slimmable models are better than backbone slimmable ones. 							
 Observation: • Differences mainly exist along the semantic boundaries Source boundary 	Network Width Independent mIoU Slimmable mIoU FLOPs 79 SFNet ResNet50 $\times 1.0$ $\times 0.75$ 78.3 $\times 0.75$ 31.20 7.3 $78.4 (0.1\uparrow)$ $77.9 (0.6\uparrow)$ $77.4 (1.1\uparrow) 607.931.29$ $343.4153.9$ 976							

Slimmable Semantic Segmentation Network

We propose a flexible semantic segmentation framework (SlimSeg), which can adapt its model capacity during inference via the channel slimming mechanism.

	×0.25	73.2	1.97	74.4 (1.2↑)		39.4	bes bes		
SFNet ResNet18	×1.0 ×0.75 ×0.5 ×0.25	75.0 74.0 71.4 65.5	12.87 7.24 3.22 0.79	75.6 (0.6↑) 74.8 (0.8↑) 72.5 (1.1↑) 67.3 (1.8↑)	12.89	243.4 137.4 61.5 15.7	Citysca 23	•	Slim-SFNet (single model) SFNet (4 individual models) PartialSlim-SFNet (single model) Partial-SFNet (4 individual mode
SFNet DFNetv2	×1.0 ×0.75 ×0.5 ×0.25	73.6 71.4 70.0 62.5	17.88 10.06 4.48 1.12	73.1 $(0.5\downarrow)$ 71.1 $(0.3\downarrow)$ 69.8 $(0.2\downarrow)$ 64.2 $(1.7\uparrow)$	17.91	80.2 45.2 20.2 5.2	720	100 Billi	200 300 400 500 60 ons of Multiply-Adds (GFLOPs)
SFNet DFNetv1	×1.0 ×0.75 ×0.5 ×0.25	70.0 67.8 65.0 57.8	8.42 4.74 2.11 0.52	69.4 (0.6↓) 67.0 (0.8↓) 65.3 (0.3↑) 59.8 (2.0↑)	8.44	32.8 18.6 8.4 2.2	78 		
DeepLabv3+ ResNet50	×1.0 ×0.75 ×0.5 ×0.25	78.0 77.6 76.7 74.0	40.35 22.71 10.11 2.54	78.4 (0.4↑) 78.2 (0.6↑) 77.6 (0.9↑) 75.6 (1.6↑)	40.44	1463 824.3 347.6 92.9	Cityscapes mlo 52 24		
DeepLabv3+ MobileNetv2	×1.0 ×0.75 ×0.5 ×0.35	66.9 63.3 58.6 56.1	4.53 2.57 1.16 0.57	67.9 (1.0↑) 67.0 (3.7↑) 64.3 (5.7↑) 61.1 (5.0↑)	4.58	18.5 12.2 5.7 3.3	73 72 0	Billi	 Slim-DeepLabv3+ (single model) DeepLabv3+ (4 individual models) PartialSlim-DeepLabv3+ (single model) Partial-DeepLabv3+ (4 individual mode 500 1000 11 ons of Multiply-Adds (GFLOPs)

Stepwise Downward Distillation

- Using the distillation combined with boundary guided loss function achieve higher accuracy on all the subnetworks.
- Stepwise downward distillation benefits more on smaller submodels.

KD	$\begin{bmatrix} GT \\ \mathcal{L}_{seg} & \mathcal{L}_b \end{bmatrix}$	$\mathcal{L}_{g} \left \begin{array}{c} \mathcal{L} \\ \mathcal{L} \end{array} \right $	Soft Targ $\mathcal{L}_{seg} \ \mathcal{L}_b$	$\left \begin{array}{c} \text{get} \\ \mathcal{L}_g \end{array} \right \times 0$	0.25	mIoU ×0.5	J (%) ×0.75	×1.0]	KD Teach	er	Loss	×0.25	mIoU ×0.5 >	(%) <0.75	×1.0
	 ✓ 			71	1.82	75.97	76.92	77.90	N	w/o -		$\mathcal{L}_{CE/BCE}(p^n, y)$	73.63	76.92 7	77.77	78.26

Slimmable semantic segmentation framework

Slimmable Network

- The same model runs at different number of active channels (widths).
- Independent batch normalization (BN) layers for each widths.

Stepwise Downward Distillation

The class probabilities estimated from the larger subnetwork are used as soft targets for training the next smaller subnetwork.

$$\mathcal{L}_{seg} = \mathcal{L}_{CE}(p_s^N, y_s) + \sum_{n=1}^{N-1} \mathcal{L}_{KD}(p_s^n, p_s^{n+1})$$

Semantic Boundary Supervision

Auxiliary Boundary Detection Head

N-1also training with stepwise $\mathcal{L}_b = \mathcal{L}_{BCE}(p_b^N, y_b) + \sum \mathcal{L}_{KD}(p_b^n, p_b^{n+1})$ downward distillation

		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	74.40	77.37	77.87	78.43
	w	\checkmark		\checkmark	√		\checkmark	72.94	76.16	77.41	78.37
		\checkmark	\checkmark		\checkmark	\checkmark		73.12	76.04	77.21	78.21
		\checkmark			\checkmark			71.94	75.86	76.64	77.55
_		\checkmark	\checkmark	\checkmark				73.63	76.92	77.77	78.26
•		\checkmark		\checkmark				72.49	76.47	77.82	78.35
v	v/0	\checkmark	\checkmark					73.08	76.34	77.12	78.14
		V						71.82	75.97	76.92	77.90

			1			_
	prev	$\mathcal{L}_{KD}(p^n, p^{n+1})$	74.40	77.37	77.87	78.43
117	largest	$\mathcal{L}_{KD}(p^n, p^N)$	73.64	76.72	77.04	78.38
vv	mean	$\mathcal{L}_{KD}(p^n, \frac{1}{N-n}\sum_{i=n+1}^N p^i)$	73.24	76.25	77.53	77.85
	larger	$\frac{1}{N-n}\sum_{j=n+1}^{N}\mathcal{L}_{KD}(p^n,p^j)$	73.25	75.87	78.02	78.61

Boundary Supervision

- Better performance on small objects and semantic borders.
- The features in boundary and textured regions are enhanced. \bullet

Semantic Boundary Guided Loss

Boundary Guided Masking

$$\begin{split} M_{b}(u,v) &= \begin{cases} valid, & p_{b}(u,v) > \tau \\ invalid, & otherwise \end{cases} \\ p_{ms}^{n} &= M_{b}^{n}(p_{s}^{n}), n \in \{1, 2, \cdots, N\} \\ \mathcal{L}_{g} &= \mathcal{L}_{CE}(p_{ms}^{N}, y_{s}) + \sum_{n=1}^{N-1} \mathcal{L}_{KD}(p_{ms}^{n}, p_{s}^{n+1}) \\ \mathcal{L}_{full} &= \mathcal{L}_{seg} + \lambda_{1}\mathcal{L}_{b} + \lambda_{2}\mathcal{L}_{g} \end{split}$$

Slimmable Convolution

BN_{N-1}

Slimmable Unit

(a) Im age/GT (b) ×1.0 (c) ×0.75 (d) ×0.5 (e) ×0.25 Low-level features w & w/o BS

Discussion and Limitation

- A general slimmable framework can be directly applied to most mainstream segmentation models.
- Enable adjustable accuracy-efficiency tradeoffs.
- Higher accuracy on smaller submodels without great accuracy drops on large submodels.
- Globally consistent width multipliers are sub-optimal.

Project PID2021-128178OB-I00 funded by MINISTERIO DE CIENCIA