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Developing traditional image/video codecs
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… for practical applications
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Transform coding pipeline
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Block 
partition

8x8 
DCT

Entropy 
encoder

01100
Entropy 
decoder

8x8 
IDCT

Transform
(possibly lossy)

(Inverse) transform
(possibly lossy)



Neural image codecs

Encoder Decoder01100

ReconstructedOriginal

Design network 
architecture
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- Coding tools and syntax are parametric and learned
- Encoders/decoders and probability models are deep neural networks



Typical pipeline

01100

Compressive autoencoder (CAE) [Theis2017, Balle2017]
 (autoencoder+quantization+entropy coding)

Feature 
encoder 
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Not differentiable!

Balle et al. End-to-end Optimized Image Compression, ICLR 2017
Theis et al., Lossy Image Compression with Compressive Autoencoders, ICLR 2017

https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1703.00395


Typical pipeline
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Feature 
encoder 

Entropy 
encoder

Feature 
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Entropy 
decoder

Not differentiable!

Observation 1:
- Entropy coding is reversible: bypass it
- Entropy is a tight lower bound to the rate: use as approximation
Observation 2:
- Quantization (i.e. rounding) introduces a uniform error

Balle et al. End-to-end Optimized Image Compression, ICLR 2017
Theis et al., Lossy Image Compression with Compressive Autoencoders, ICLR 2017

https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1703.00395


Architecture (training)

𝑅(𝒳tr, 𝜓)

𝐷(𝒳tr, 𝜓)

Use differentiable proxies for end-to-end training
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𝜓∗ = min

𝜓
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Balle et al. End-to-end Optimized Image Compression, ICLR 2017
Theis et al., Lossy Image Compression with Compressive Autoencoders, ICLR 2017

https://arxiv.org/abs/1611.01704
https://arxiv.org/abs/1703.00395
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Simple entropy model
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More complex entropy models
E.g. hyperprior [Balle 2018]
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Balle et al. Variational image compression with a scale hyperprior ICLR 2018

https://arxiv.org/abs/1802.01436


Reducing decoding cost: shallow decoders

Yang and Mandt, Asymmetrically-powered Neural Image Compression with Shallow Decoders ICCV 2023

E.g. 2 layer-decoder [Yang2023]

https://arxiv.org/pdf/2304.06244


Perception vs distortion

Downsampling
(25%)

Upsampling
(bicubic 4x)

Note: lossy
(lost information 

can’t be recovered)



Perception vs distortion

OriginalBicubic SRGAN
PNSR 21.59 dB

SRResNet (MSE)
PNSR 23.53 dB PNSR 21.15 dB

Is (MSE/PSNR) distortion a good quality metric?



Perception vs distortion

𝐷(𝑥, 𝑥)Distortion metric
(full-reference)

How close is the image
to the original one?

𝑃(𝑥)Perceptual metric
(no-reference)

How realistic is
the image?

real/fake?
Discriminator
(of a GAN)



Perception-distortion
in image superresolution methods

Slide adapted from Y. Blau
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Perception-distortion tradeoff

The Perception-Distortion Tradeoff, CVPR 2018

https://arxiv.org/abs/1711.06077


Perception vs distortion in 
(lossy) compression?

Encoder Decoder01100100

ReconstructedOriginal
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sampling
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Rate determines how much
information is lost



Rate-distortion-perception tradeoff

01100100

01

Rethinking Lossy Compression: The Rate-Distortion-Perception Tradeoff, ICML 2019

https://arxiv.org/abs/1901.07821


Optimizing for perception:
generative lossy compression

High-Fidelity Generative Image Compression, NeurIPS 2020

Optimize perception using a discriminator and adversarial loss
The decoder acts as generator of a conditional GAN

Encoder 
Entropy 
coding

Decoder

Training data

Discrimi
nator

real/
fake?generator

https://arxiv.org/abs/2006.09965


Generative lossy compression

High-Fidelity Generative Image Compression, NeurIPS 2020

Original (768x512 pixels – 1.18 MB)

https://arxiv.org/abs/2006.09965


Generative lossy compression

High-Fidelity Generative Image Compression, NeurIPS 2020

JPEG (8 kB)

https://arxiv.org/abs/2006.09965


Generative lossy compression

High-Fidelity Generative Image Compression, NeurIPS 2020

HiFiC (7 kB)

https://arxiv.org/abs/2006.09965


Generative lossy compression

High-Fidelity Generative Image Compression, NeurIPS 2020

HiFiC
(7 kB)

JPEG 
(8 kB)

2020

1992

https://arxiv.org/abs/2006.09965


Other learned-based image 
compression approaches 
Implicit representations (e.g. COIN, COIN++)

Diffusion models Neural collages (fractal compression)

Dupont et al. COIN: COmpression with Implicit Neural representations arxiv 2021
Dupont et al. COIN++: Neural Compression Across Modalities TMLR 2022
Yang et al. Lossy Image Compression with Conditional Diffusion Models arxiv 2022
Poli et al., Self-Similarity Priors: Neural Collages as Differentiable Fractal Representations NeurIPS 2022

https://arxiv.org/abs/2103.03123
https://arxiv.org/abs/2201.12904
https://arxiv.org/abs/2209.06950
https://arxiv.org/abs/2204.07673
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From transform coding to
neural image coding
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Traditional video compression
(motion-compensated transform coding)
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Neural video compression
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Idea: replace modules by trainable neural networks



Motion-compensated 
neural video compression

Example: DVC [Lu2019]

Lu et al. DVC: An End-To-End Deep Video Compression Framework CVPR 2019

https://arxiv.org/abs/1812.00101


Predictive feature coding
Exploit temporal redundancy directly in the latent space
- More flexible, since it is not constrained by the characteristics of 
pixel space
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Predictive feature coding
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Conditional entropy model
Condition on previous feature to exploit temporal redundancy for 
entropy modeling

Examples: [Liu2020], STEM [Sun2021]
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Conditional video compression
Condition on a contextual feature to exploit temporal redundancy
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Conditional video compression

Why residual coding is suboptimal compared to conditional coding?

- Let’s consider we want to encode 𝑥𝑡  given context 𝑥𝑡 , 
- We are interested in estimating p 𝑥𝑡| 𝑥𝑡

- Residual coding is a particular case of conditional coding p 𝑥𝑡| 𝑥𝑡 = p 𝑥𝑡 − 𝑥𝑡

 i.e. substraction is a particular fixed (not learnable) operation to predict 𝑥𝑡

- Residual entropy is higher than conditional entropy, so less compressible
 i.e. H 𝑥𝑡 − 𝑥𝑡 ≥ H 𝑥𝑡| 𝑥𝑡

- 𝑥𝑡 doesn’t need to be a frame, could be a more flexible learned context

Li et al. Deep Contextual Video Compression NeurIPS 2021

https://arxiv.org/abs/2109.15047


Conditional video compression

Li et al. Deep Contextual Video Compression NeurIPS 2021

https://arxiv.org/abs/2109.15047


Richer contextual models
Multi-scale temporal contexts [DCVC-TCM]

Hybrid spatio-temporal 
entropy modeling [DCVC-HEM]

More diverse contexts [DCVC-DC]

DCVC-TCM: Sheng et al. Temporal 
Context Mining for Learned Video 
Compression arxiv 2021/TMM 2023

DCVC-HEM: Li et al. Deep Contextual 
Video Compression ACM Multimedia 
2022

DCVC-DC: Li et al. Neural Video 
Compression with Diverse Contexts 
arxiv 2023

https://arxiv.org/abs/2111.13850
https://arxiv.org/abs/2111.13850
https://arxiv.org/abs/2111.13850
https://arxiv.org/abs/2109.15047
https://arxiv.org/abs/2109.15047
https://arxiv.org/abs/2302.14402
https://arxiv.org/abs/2302.14402


Current SOTA in video compression

Traditional 
codecs

Neural codecs

*HM, VTM, ECM use their best compression ratio 
configurations for low delay

Li et al. Neural Video Compression with Diverse Contexts arxiv 2023

https://arxiv.org/abs/2302.14402


Current SOTA in video compression

Li et al. Neural Video Compression with Diverse Contexts arxiv 2023

https://arxiv.org/abs/2302.14402
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Practical image/video compression
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Rate-distortion tradeoff λ in NIC

Input Decoded Error

Problems: total memory, total training time

High rate (λ=0.032)

P
S
N

R
 (
d
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bpp

RD curve PSNR= 36.2 dB Rate= 0.41 bpp

PSNR= 31.1 dB Rate= 0.08 bppLow rate (λ=0.002)



Is neural image compression practical?

Encoder Decoder01100

+𝝀𝑅( )01100 𝐷(𝑥, 𝑥)

Practical neural image compression?
- Minimize rate
- Minimize distortion

✓
✓Limitations

- Variable rate






- Low memory
- Low computation
- Low latency

- Heavy encoders/decoders

- 𝝀 is fixed

[SPL2020] Variable Rate Deep Image Compression with Modulated Autoencoder, Signal Processing Letters 2020

MAE
[SPL2020]

SlimCAE 
[CVPR2021]

[CVPR2021] Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

Other practical considerations
- Domain-specific codecs (e.g. videoconference, screencast)
- Back./forw. compatibility (with legacy encoders/decoders)

DANICE
[CLIC2021]

[CLIC2021] DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/1912.05526
https://arxiv.org/abs/2103.15726
https://arxiv.org/abs/2104.09370


Variable rate with modulated autoencoders
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Bottleneck scaling [Theis2017]
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- Low memory
- Low computation
- Low latency✓- Variable rate

- Minimize rate
- Minimize distortion

✓
✓

Objective: one single model for multiple 𝜆

cAE: conditional autoencoder [Choi2019] 
MAE: modulated autoencoder [Yang2020]

𝜆

Scaling 
factor

Modulation 
network

𝜆



Model capacity and rate-distortion

P
S
N

R
 (
d
B
)

bpp
conv

conv

conv

gdn

gdn

gdn

gdn

gdn

gdn

conv

conv

conv

w=192

w=filters per layer

conv

conv

conv

gdn

gdn

gdn

gdn

gdn

gdn

conv

conv

conv

w=128

conv

conv

conv

gdn

gdn

gdn

gdn

gdn

gdn

conv

conv

conv

w=64
There is a minimal capacity 
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Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Slimmable compressive autoencoder

✓- Variable rate

- Minimize rate
- Minimize distortion

✓
✓

Approach: slim the network to the minimal capacity for a given 𝜆

Slimming [SlimCAE]

- Lower memory
- Lower computation
- Lower latency ✓

✓
✓

(for low-mid rates)
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Select w 
and slim

Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Slimmable layers in SlimCAE

SlimCAE
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Slimmable convolution [Yu2019]
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Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Slimmable layers in SlimCAE
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Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Training SlimCAE
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Problem: we need the optimal 𝝀s to train the SlimCAE
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Estimate from RD curves 
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1. Train several independent models 
for different w

2. Plot RD curves and find critical 
points

3. Estimate optimal 𝜆s from trained 
models

Problem: extremely expensive!

Automatically estimate during 
training via 𝜆-scheduling

1. Train a SlimCAE with 𝜆1 = 𝜆2 = 𝜆3

2. While not converged do
• Update 𝜆 s according to schedule
• Optimize CAE

Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726
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Training SlimCAE
P
S
N

R
 (
d
B
)

bpp

Problem: we need the optimal 𝜆s to train the SlimCAE

P
S
N

R
 (
d
B
)

bpp

w=128

w=192

w=64

Estimate from RD curves 
of independent models

w=192

w=128

w=64

1. Train several independent models 
for different w

2. Plot RD curves and find critical 
points

3. Estimate optimal 𝜆s from trained 
models

Problem: extremely expensive!

Automatically estimate during 
training via 𝜆-scheduling

1. Train a SlimCAE with 𝜆1 = 𝜆2 = 𝜆3

2. While not converged do
• Update 𝜆 s according to schedule
• Optimize CAE

Slimmable compressive autoencoders for practical image compression, CVPR 2021
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2. While not converged do
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• Optimize CAE

Directly train one model!

Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Performance comparison
Independent CAEs

(each with minimal capacity)
Scaling [Theis2017] MAE [Yang2020] cAE [Choi2019] SlimCAE (ours)
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Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Visualizing some parameters
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Slimmable compressive autoencoders for practical image compression, CVPR 2021

https://arxiv.org/abs/2103.15726


Slimmable video codec (SlimVC)
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Slimmable video codec, CLIC 2022 at CVPR 2022

https://arxiv.org/abs/2205.06754


Slimmable video codec (SlimVC)
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Slimmable video codec, CLIC 2022 at CVPR 2022
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Slimmable video codec (SlimVC)
Memory footprint
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Slimmable video codec, CLIC 2022 at CVPR 2022

https://arxiv.org/abs/2205.06754


Slimmable video codec (SlimVC)

Slimmable video codec, CLIC 2022 at CVPR 2022

Computational cost (GFLOPs)
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Is neural image compression practical?

Encoder Decoder01100

+𝝀𝑅( )01100 𝐷(𝑥, 𝑥)

Practical neural image compression?
- Minimize rate
- Minimize distortion

✓
✓Limitations

- Variable rate






- Low memory
- Low computation
- Low latency

- Heavy encoders/decoders

- 𝝀 is fixed

[SPL2020] Variable Rate Deep Image Compression with Modulated Autoencoder, Signal Processing Letters 2020

MAE
[SPL2020]

SlimCAE 
[CVPR2021]

[CVPR2021] Slimmable compressive autoencoders for practical imaga compression, CVPR 2021

DANICE
[CLIC2021]

[CLIC2021] DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

Other practical considerations
- Domain-specific codecs (e.g. videoconference, screencast)
- Back./forw. compatibility (with legacy encoders/decoders)

https://arxiv.org/abs/1912.05526
https://arxiv.org/abs/2103.15726
https://arxiv.org/abs/2104.09370


Learned codecs are only optimal in the domain of the training data

PSNR = 29.1 dB

Rate = 0.108 bpp

𝑓1 𝑔1

𝑅 + 𝜆𝐷

Face 
domain 

𝒳1
tr

Training Test

𝑓1 𝑔1

Rate-distortion optimality of learned codecs

𝑓2 𝑔2

𝑅 + 𝜆𝐷

Street 
domain 

𝒳2
tr

PSNR= 27.3 dB

Rate= 0.138 bpp

𝑓2 𝑔2

PSNR= 26.3 dB

Rate = 0.153 bpp

𝑓1 𝑔1

DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/2104.09370


Domain Adaptation in Neural Image ComprEssion 
(DANICE)

Learned codecs can be customized with user content to specific domains

Source domain 
(e.g. CLIC)

Source model
(off-the-shelf)

Codec 
adaptation

Codec 
adaptation

Adapted codec
to faces

Target domain 
(portrait faces)

Adapted codec 
to driving scenes

Target domain 
(driving scenes)

Problem: usually not enough custom data; training is expensive
Solution: transfer pre-trained codecs

DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/2104.09370


Misalignment between encoding-decoding latent spaces
(i.e. bitstream syntax incompatible)

𝑓1 𝑔1

𝑅 + 𝜆𝐷

Source  
domain 

𝒳1
tr

Training Test

𝑓1 𝑔1

Backward incompatibility with legacy 
bitstreams: catastrophic forgetting

𝑓2 𝑔2

𝑅 + 𝜆𝐷

Target 
domain 

𝒳2
tr

𝑓1 𝑔2

Error
Also forward 

incompatibility

𝑓2 𝑔1

Catastrophic 
forgetting

DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/2104.09370


Encoding-decoding latent spaces aligned, but suboptimal
(i.e. bitstream syntax compatible, yet degraded)

𝑓1 𝑔1
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Training Test
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Rate-distortion forgetting
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𝑅 + 𝜆𝐷

Target 
domain 

𝒳2
tr

Error

𝑓2 𝑔2

Rate-distortion 
forgetting

DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/2104.09370


Freeze source codec, and learn target codec as an enhancement layer
Drawback: adds additional parameters

𝑓1 𝑔1

𝑅 + 𝜆𝐷

Source  
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𝒳1
tr

Training Test

𝑓1 𝑔1

Codec adaptation without forgetting (CAwF)
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Target 
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𝒳2
tr

𝑔2

𝑓2 𝑔2

𝑓2 𝑔2

DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/2104.09370


Codec adaptation without forgetting (CAwF)

CelebA➝Cityscapes
(source domain)

Codec adaptation 
artifacts

DANICE: Domain adaptation without forgetting in neural image compression, CLIC 2021 at CVPR 2021

https://arxiv.org/abs/2104.09370


Outline

• Neural image/video compression: a walkthrough

• Our work on neural image/video compression

– Practical neural image compression

– Neural image compression for machines

• Other works



Data collection for onboard perception

Capture

Annotation

Analysis 
module

Training

Analysis 
module

Deployment

Analysis 
module

Test

The more images, the better model (in principle)

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Data collection for onboard perception

No compression

Losseless
Lossless 
encoder

Lossy
Lossy 

encoder

The higher the compression rate the more 
images we can collect

Distortion

No distortion

No distortion

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Distributed data collection

Channel Decoder

Car side Server side

Analysis 
module

Training
Encoder

Encoder

Encoder

Capture

Analysis 
module

Analysis 
module

Test

Deployment

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Distributed data collection

Car side Server side

Analysis 
module

Training

Analysis 
module

Analysis 
module

Test

Deployment

Original images

Compressed images

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Training images vs test images 
Training (compressed) Test (original)

codec: mean-scale hyperprior

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Training images vs test images 
Training (compressed) Test (original)

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Training images vs test images 

Training (compressed) Test (original)

Observation 1: training and test distributions are different (covariate shift)

Observation 2: training images have less information than test images
(loss of information)

Configuration CO: 
compressed/original

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Training/test configurations

Training Test

OC
original/compressed

OO (ideal)
original/original

CO
compressed/ original

CC
compressed/compressed

Covariate 
shift

Information 
loss

(training/test)

No No/No

Yes No/Yes

No Yes/Yes

Yes Yes/No

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Effect on downstream task
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Conclusion (this dataset): better to 
keep more information in test than 

reduce the covariate shift

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Proposed approach: dataset restoration

Dataset 
(restoration)

Restoration 
modelTrain restoration model

(with a dataset with 
high quality images)

Uses adversarial loss

Dataset 
(analysis)

Restoration 
model

Restored 
dataset

Restore the dataset
of interest

Analysis 
module

Training

Restored 
dataset

Train the downstream 
model

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Training images vs test images 

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

Original (test) Compressed Restored

E D01 R

https://arxiv.org/abs/2004.10497


Effect on downstream task
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Why does it work?
- Alleviates the covariate shift
- Keeps useful information for segmentation (e.g. texture)

RO

R
es

to
ra

t

RO

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Experiments. Rate-distortion
Dataset: Cityscapes. Codecs: BPG (traditional), MSH (neural)

Restoration harms R-D performance

Baseline 
(CO)

Restoration 
(RO)

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

https://arxiv.org/abs/2004.10497


Experiments. Segmentation
Dataset: Cityscapes. Codecs: BPG (traditional), MSH (neural)

Restoration improves segmentation performance

Baseline 
(CO)

Restoration 
(RO)

Distributed Learning and Inference with Compressed Images, IEEE Trans. Image Processing 2021

Upper
bound (OO)

https://arxiv.org/abs/2004.10497


Semantic preprocessor for VCM

Semantic preprocessor for image compression for machines, ICASSP 2023

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10096472


Task-switchable preprocessor for VCM

Submitted to CSVT



Task-switchable preprocessor for VCM

Submitted to CSVT



Outline

• Neural image/video compression: a walkthrough

• Our work on neural image/video compression

• Other works

– Multi-image restoration

– Semantic segmentation

– Transfer and continual learning



Burst perception-distortion tradeoff

Scenario: burst image restoration
Motivation
- How temporal information affects the restored image quality?
- How perception, distortion and their tradeoff change with multiple 

images

Burst Perception-Distortion Tradeoff: Analysis and Evaluation, ICASSP 2023

https://ieeexplore.ieee.org/document/10096218


Burst perception-distortion tradeoff

Experimental setting (denoising+superresolution)

Burst Perception-Distortion Tradeoff: Analysis and Evaluation, ICASSP 2023

https://ieeexplore.ieee.org/document/10096218


Burst perception-distortion tradeoff

Case 1 (perfectly aligned bursts):
- E.g. Stable shooting (no shaking or motion)
- E.g. Accurate flow estimation

Case 2 (misaligned bursts):
- E.g. Alignment errors, or errors in flow estimation

Perfect alignment: the 
more frames the better

Imperfect alignment: more 
frames can be harmful 

(depending on the shake 
and noise levels)

Burst Perception-Distortion Tradeoff: Analysis and Evaluation, ICASSP 2023

https://ieeexplore.ieee.org/document/10096218


Video quality enhancement
and artifact removal

Encoder
(e.g. H.264)

Decoder
(e.g. H.264)

01

Video quality 
enhancement 

net

Typical approach:
- Align several frames
- Aggregate the aligned information

to alleviate noise/artifacts

Dai et al., Deformable Convolutional Networks, ICCV 2017
DCNGAN: A deformable convolution-based GAN with QP adaptation for perceptual quality enhancement of 
compressed video, ICASSP 2022

Deformable convolution

Our specific contribution:
- Use deformable convolutions for multiframe alignment
- QP-conditional quality enhancement network

QP=quantization parameter

https://arxiv.org/abs/1703.06211
https://arxiv.org/abs/2201.08944
https://arxiv.org/abs/2201.08944


Outline

• Neural image/video compression: a walkthrough

• Our work on neural image/video compression

• Other works

– Multi-image restoration

– Semantic segmentation

– Transfer and continual learning



Slimmable semantic segmentation

SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision ACM Multimedia 2022

https://arxiv.org/abs/2207.06242


Slimmable semantic segmentation

SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision ACM Multimedia 2022

https://arxiv.org/abs/2207.06242


Outline

• Neural image/video compression: a walkthrough

• Our work on neural image/video compression

• Briefly: other works

– Multi-image restoration

– Semantic segmentation

– Transfer learning, continual learning and domain 
adaptation



Continual learning in humans
(a.k.a. lifelong/sequential/incremental learning)

time
Task 1

ES

Task 3

中文

Task 2

EN

• Reuse of past knowledge (i.e. knowledge transfer, transfer learning)
• Learn new skills for new tasks



…and forgetting

time

ENES ENES中文
ES
EN ENES ENES ENES

Hola
Hello
你好

Hola
Hello
???

Forgetting



Transfer learning and continual learning

Source task Target task
Task 2

Transfer+adaptation Continual learning

Task 1

Continual learning =
transfer learning – (catastrophic) forgetting

Discriminative 
models

Rotated EWC (ICPR 2018), 
CVPR2020, …

Forgets source task, i.e. catastrophic 
forgetting (who cares?)

Forgets task 1
(big deal!!)



Transfer learning and continual learning
(now with GANs for image generation)

Target domain
Task 2

Transfer+adaptation (generation) Continual learning (generation)

Source domain Task 1

Memory Replay GANs
(NeurIPS 2018)

Transferring GANs
(ECCV 2018)



Sequential learning for image
generation

c=0      c=1      c=2      c=3      c=4      c=5      c=6      c=7      c=8      c=9
MNIST 10 categories (10 tasks)

LSUN 4 categories (4 tasks)
c=bedroom c=kitchen c=church c=tower

Check the videos at 
https://www.lherranz.org/2018/10/29/mergans



Check the video at 
https://www.lherranz.org/2018/10/29/mergans



Unsupervised domain adaptation (UDA)

Source domain Target domain

Domain shift

Abundant data Scarce data

Annotated Not annotatedLaptop computer

Bicycle

Mug



(Source-aware) UDA

Target domain

Source domain

Laptop computer

Bicycle

Mug

Adapted 
modelAdaptation



Source-free domain adaptation

Source 
model

Target domain

Adapted 
model

Adaptation(Pre-)training
Source domain

Laptop computer

Bicycle

Mug

No longer have access to 
source domain images 

(e.g. privacy)



Source-free domain adaptation

Target domain

Source 
model

Adapted 
model

Adaptation Test

Target domain



Generalized source-free domain adaptation

Target domain

Source 
model

Adapted 
model

Adaptation

Generalized Source-free Domain Adaptation, ICCV 2021

Test

Source+target domains

https://arxiv.org/abs/2108.01614


Generalized Source-free Domain Adaptation, ICCV 2021

Source-free domain adaptation

Slide credit: Shiqi Yang

https://arxiv.org/abs/2108.01614


Generalized Source-free Domain Adaptation, ICCV 2021

Generalized source-free domain adaptation

Slide credit: Shiqi Yang

https://arxiv.org/abs/2108.01614


Exploiting neighborhood structure

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation, NeurIPS 2021

Slide credit: Shiqi Yang

https://arxiv.org/abs/2110.04202


Exploiting neighborhood structure

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation, NeurIPS 2021

03
2

1
4

5 0 1 2

1 4 5

2 0 3

Query NNs

… … …

Reciprocal nearest neighbors (example K=2)

0 1 2

2 0 3

0 1 2

1 4 5

0 and 2 are RNNs

Feature space

0 and 1 are not RNNs

Neighborhood structure Are they reciprocal?

https://arxiv.org/abs/2110.04202


Exploiting neighborhood structure

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation, NeurIPS 2021

Slide credit: Shiqi Yang

https://arxiv.org/abs/2110.04202


Exploiting neighborhood structure

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation, NeurIPS 2021

Slide credit: Shiqi Yang

https://arxiv.org/abs/2110.04202


Exploiting neighborhood structure. 
Results

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation, NeurIPS 2021

Slide credit: Shiqi Yang

https://arxiv.org/abs/2110.04202


THANK YOU!
lherranz@cvc.uab.es

www.lherranz.org

www.lherranz.org/blog

mailto:lherranz@cvc.uab.es
http://www.lherranz.org/
https://www.lherranz.org/blog
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